Numerical Value Type	DTS-11
----------------------	--------

- **126.(6)** Total six types of molecules of water are possible.
- **127.(4)** In tritium atom one proton, one electron and two neutrons are present.
- **128.(30)** '10 volume' H_2O_2 sample = 10 ml of oxygen at STP are produced from 1 ml of '10 volume H_2O_2 sample' of H_2O_2 solution.

$$2 \text{H}_2 \text{O}_2 \quad \longrightarrow \quad 2 \text{H}_2 \text{O} \quad + \quad \text{O}_2$$

68 gm

22400 ml

1 ml of oxygen is obtained from = $\frac{68}{22400} \times 10 = 0.03 \text{ gm H}_2\text{O}_2$

1 ml of H_2O_2 solution contains = 0.03 gm H_2O_2

100 ml of H_2O_2 solution contains = 3 gm H_2O_2

Strength = 30 gm/L

129.(560)

$$Ca(HCO_3)_2 + CaO \longrightarrow 2CaCO_3 + H_2O + CO_2$$

 $162 \text{ g Ca} (HCO_3)_2 = 56 \text{ g of CaO}$

$$1 \text{ g Ca(HCO}_3)_2 = \frac{56}{162} \text{ gm of CaO}$$

$$1620 \,\mathrm{gm} \, \,\mathrm{Ca(HCO_3)_2} = \frac{56}{162} \times 1620 \,\mathrm{gm} \quad \Rightarrow \quad 560 \,\mathrm{gm}$$

130.(1) Li_2CO_3 decomposes while K_2CO_3 is stable and does not decompose

$$\mathrm{Li}_{2}\mathrm{CO}_{3} \ \longrightarrow \ \mathrm{Li}_{2}\mathrm{O} \ + \ \mathrm{CO}_{2}$$

1 mole

1 mole

131.(6) (1) CaSO₄ ·
$$\frac{1}{2}$$
H₂O or 2CaSO₄ · H₂O(P.O.P); $x = 2$

(2) $CaSO_4 \cdot 2H_2O(gypsum)$;

y = 4

132.(4)
$$KO_2^{-1/2} + H_2O^{-2} \longrightarrow KO^{-2}H + H_2O_2^{-1} + O_2^0$$

133.(2)
$$CaC_2 + H_2O \longrightarrow C_2H_2 + Ca(OH)_2$$

$$Mg_2C_3 + H_2O \longrightarrow C_3H_4 + Mg(OH)_2$$

$$Be_2C + H_2O \longrightarrow Be(OH)_2 + CH_4$$

- **134.(4)** Second period element can form maximum four bonds.
- 135.(120) Atomic number of last element is 118 and it is group 18th element.
- 136.(1) $4\text{Li} + \text{O}_2 \longrightarrow 2\text{Li}_2\text{O}$

Other metals form peroxide and super oxide under normal condition.

137.(2) Electron precise compounds have the required number of electrons to write their conventional Lewis dot structure. Group 14 form such compound which are tetrahedral in geometry.

Vidyamandir Classes _

138.(4) Single molecule of water can make four H-bonds.

139.(8)
$$\operatorname{Na_2CO_3} \cdot 10 \operatorname{H_2O} \xrightarrow{375 \mathrm{K}} \operatorname{Na_2CO_3} \cdot \operatorname{H_2O} + 9 \operatorname{H_2O}$$

 $Y = 9$
 $X = 1$
 $Y - X = 8$

140.(2) Compound of lithium are more covalent and has higher lattice energy. Only 3 & 4 are correct